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o Photobases are molecules that become more basic after electronic excitation.
o The 5-R-quinolines are representative photobases that have been characterized both experimentally 

and computationally (below, left).1,3

o The Petit lab explored other potential photobases like the 𝛽-carbolines and 𝛾-carbolines (below right).2

o Both figures show an increase in basicity strength in the excited state (quantified through p𝐾!∗).
o Notably 5-NH2-quinoline went from p𝐾!= 5.3 to p𝐾!∗	= 15.9 (or 𝐾#= 1.99 x 10-9 to 𝐾#∗= 15.9).

o Judy Wu’s group recently explored 
photoacidity and found a trend involving 
excited state anti-aromaticity (left).4

o The rings are aromatic in the ground state.
o The rings became significantly anti-aromatic 

after the electronic excitation.
o The thermodynamic driving force for excited 

state proton transfer attributed to the relief of 
excited state anti-aromaticity.

o Aromaticity was calculated using nucleus-independent 
chemical shifts (NICS) analysis.

o NICS determines the absolute magnetic shielding at the 
center of a ring by probing with a dummy atom placed 1Å 
above the ring.

o The magnetic shielding reflects the aromatic ring current, 
allowing for a quantification of aromaticity/anti-aromaticity.

o All 5-R quinolines show a relief in 
excited state anti-aromaticity after 
protonation.

Results: 𝛽-Carbolines 

Objectives

2) Does NICS analysis quantitatively correlate with photobasicity strength?

3) How much does the relationship between photobasicity and excited state anti-aromaticity depend on 
the molecular structure?

1) Is there a relationship between photobasicity and excited state anti-aromaticity?
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o There is a strong correlation 
between the relief in excited state 
anti-aromaticity, quantified through 
∆NICS(1)zz, and the experimental 
p𝐾!∗.
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Computational Methods
o Geometry optimizations and frequency calculations performed at the wB97X-D/def2-

SVPD level of theory with a CPCM solvent model using Q-Chem software.

o All stationary points verified to be true minima using harmonic vibrational analysis

o NICS(1)zz were calculated at the TPSS/def2-TZVPPD level of theory with a GIAO 
treatment of magnetic properties using ORCA software.

o Following literature precedent, The excited state aromaticity/anti-aromaticity was 
approximated using NICS(1)zz values calculated using T1.

o For the studied photobases, the electronic characters of the T1 and S1 states are similar.
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o The thermodynamic driving force for photobasicity was originally 
thought to reflect intramolecular charge transfer, with the ring nitrogen 
atom gaining electron density in the transition.1-3

o However, the change in electron density in the excited state (∆q*) on 
the ring nitrogen atom is consistently small.
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o In S1, the NICS(1)zz are consistently positive, which 
indicates anti-aromaticity.

o For all of these photobases, excited state 
protonation reduces the anti-aromaticity.

o The largest relief of excited state anti-aromaticity 
occurs at the ring that contains the functional group.

o For the 5-R-quinolines, the anti-aromaticity relief is 
concentrated in the ring that is not protonated.
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o This “super” photobase 
is strong enough to 
deprotonate EtOH.5

o Photobasicity originally 
ascribed to charge-
transfer excited state 
increasing electron 
density at imine N.

o ∆q* is modest at this N 
atom.

o Excited state 
protonation causes a 
significant relief of 
excited state anti-
aromaticity.

o Photobase goes from 
anti-aromatic in S1 to 
aromatic in S1 upon 
protonation.
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o We are exploring other photobasic N-heterocycles, 
such as the 𝛽-carbolines.

o The 𝛽-carbolines are anti-aromatic in the excited state.
o Excited state protonation of these compounds relieves 

this anti-aromaticity.
o Efforts to develop a quantitative relationship between 
∆NICS(1)zz, and p𝐾!∗ are ongoing.
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